翻訳と辞書
Words near each other
・ Nevadopalpa nevadana
・ Nevadopalpa striata
・ Nevados de Chillán
・ Nevados de Poquis
・ Nevados Jotabeche
・ Nevaeh
・ Nevaeh (album)
・ Nevaeh (wrestler)
・ Nevafilm
・ Neval (motorcycle)
・ Nevalı Çori
・ Nevan
・ Nevanas affair
・ Nevanka
・ Nevanlinna
Nevanlinna function
・ Nevanlinna invariant
・ Nevanlinna Prize
・ Nevanlinna theory
・ Nevanlinna's criterion
・ Nevanlinna–Pick interpolation
・ Nevarėnai
・ Nevasa
・ Nevasa (Vidhan Sabha constituency)
・ Nevasa taluka
・ Nevathali
・ Nevatim
・ Nevatim Airbase
・ Nevaton
・ Nevačka


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Nevanlinna function : ウィキペディア英語版
Nevanlinna function
:''See also Nevanlinna theory
In mathematics, in the field of complex analysis, a Nevanlinna function is a complex function which is an analytic function on the open upper half-plane ''H'' and has non-negative imaginary part. A Nevanlinna function maps the upper half-plane to itself or to a real constant,〔A real number is not considered to be in the upper half-plane.〕 but is not necessarily injective or surjective. Functions with this property are sometimes also known as Herglotz, Pick or R functions.
==Integral representation==

Every Nevanlinna function ''N'' admits a representation
: N(z) = C + Dz + \int_ - \frac \right) d\mu(\lambda), \quad z\in\mathbb,
where ''C'' is a real constant, ''D'' is a non-negative constant and μ is a Borel measure on ''R'' satisfying the growth condition

: \int_ < \infty.
Conversely, every function of this form turns out to be a Nevanlinna function.
The constants in this representation are related to the function ''N'' via
: C = \mathrm(N(i)) \qquad\text\qquad D = \lim_ \frac
and the Borel measure μ can be recovered from ''N'' by employing the Stieltjes inversion formula (related to the inversion formula for the Stieltjes transformation):
: \mu((\lambda_1,\lambda_2]) = \lim_ \lim_ \frac \int_^ \mathrm(N(\lambda+i\varepsilon))d\lambda.
A very similar representation of functions is also called the Poisson representation.〔See for example Section 4, "Poisson representation", of . De Branges gives a form for functions whose ''real'' part is non-negative in the upper half-plane.〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Nevanlinna function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.